
An OGSA-Based Accounting System for Allocation
Enforcement across HPC Centers

Thomas Sandholm1, Peter Gardfjäll2, Erik Elmroth2, Lennart Johnsson1,3, Olle Mulmo1

1 Dept. of Numerical Analysis and
Computer Science and PDC
Royal Institute of Technology

SE-100 44 Stockholm, Sweden
+46-8-7907811

{sandholm, mulmo}@pdc.kth.se

2 Dept. of Computing Science
and HPC2N

Umeå University
SE-901 87 Umeå, Sweden

+46-90-7866986

{elmroth, peterg}@cs.umu.se

3 Dept. of Computer Science and the
Texas Learning and Computation

Center, University of Houston
Houston, TX, 77204 USA

+46-8-7909275

johnsson@tlc2.uh.edu

ABSTRACT
In this paper, we present an Open Grid Services Architecture
(OGSA)-based decentralized allocation enforcement system,
developed with an emphasis on a consistent data model and easy
integration into existing scheduling, and workload management
software at six independent high-performance computing centers
forming a Grid known as SweGrid. The Swedish National
Allocations Committee (SNAC) allocates resource quotas at these
centers to research projects requiring substantial computer time.
Our system, the SweGrid Accounting System (SGAS), addresses
the need for soft real-time allocation enforcement on SweGrid for
cross-domain job submission. The SGAS framework is based on
state-of-the-art Web and Grid services technologies. The openness
and ubiquity of Web services combined with the fine-grained
resource control and cross-organizational security models of Grid
services proved to be a perfect match for the SweGrid needs.
Extensibility and customizability of policy implementations for
the three different parties the system serves (the user, the resource
manager, and the allocation authority) are key design goals.
Another goal is end-to-end security and single sign-on, to allow
resources—selected based on client policies—to act on behalf of
the user when negotiating contracts with the bank in an
environment where the six centers would continue to use their
existing accounting policies and tools. We conclude this paper by
showing the feasibility of SGAS, which is currently being
deployed at the production sites, using simulations of reservation
streams. The reservation streams are shaped using soft computing
and policy-based algorithms.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: distributed
systems – client/server, distributed applications.

General Terms
Management, Design, Security.

Keywords
Grid computing, Grid accounting, Web services, OGSA, HPC,
Security policy management

1. INTRODUCTION
Advances in network technology, in addition to the more
distributed and collaborative nature of today’s research projects,
have prompted high-performance computing centers to improve
the ease of use of their resources to a larger and more dispersed
user base, as well as responding to the need for unified access
procedures to collections of resources from multiple administra-
tive domains. As a result, monolithic and esoteric systems, albeit
more performance tuned, have had to make way for ubiquitous
and open, standards-based solutions. It has became feasible to
integrate the centers into Grids [22] that enable flexible resource
sharing and load balancing across organizational boundaries.

Virtualization across management and security policy
domains not only leads to a complex resource negotiation
situation, but also makes it harder to track usage and enforce
allocations. It is the latter issue that we address in this paper. We
have developed an accounting system to enforce nationally
allocated resource quotas across six high-performance computing
centers in Sweden.

Key requirements on the accounting system include: soft real-
time allocation enforcement based on resource usage collected
from existing site schedulers; coordinated quota management
across all clusters; uniform usage retrieval; policy negotiation and
customization between user, resource, and allocation authority;
and finally a flexible, policy driven, and standards-based
authorization framework.

Our contribution and differentiator against existing
accounting systems is fourfold: (1) we provide a decentralized
accounting solution based on standard, open protocols in Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSOC'04, November 15–19, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-871-7/04/0011...$5.00.

This work was partly funded by The Swedish Research Council
(VR) under contracts 343-2003-953 and 343-2003-954, the Royal
Institute of Technology, and The Faculty of Science and
Engineering, Umeå University.

279

compliance with the proposed Open Grid Services Architecture
(OGSA) [21, 23], (2) we facilitate 3-party (user, resource,
allocator) policy customization, (3) our system is non-intrusive to
existing local site accounting systems and end-user tools, and thus
offers light-weight deployment, and (4) all accounting
components are governed by a scalable cross-organizational
authorization framework based on state-of-the-art Web services
protocols.

The paper is organized as follows: Section 2 contains an
overview of recent standards efforts in the field of wide area
distributed computing relevant to Grid computing. The SweGrid
network and its accounting requirements are outlined in Section 3.
In Section 4, we present some existing accounting systems and
architectures, and we discuss why they do not meet the SweGrid
needs. Section 5 describes the SweGrid accounting system design
and Section 6 the implementation. Section 7 presents some results
from simulations of reservations against our system. Finally, in
Section 8, we summarize our contribution and our future research
and development plans.

2. OGSA AND WEB SERVICES
OGSA was developed in order to solve the complex task of
sharing and integrating fine-grained heterogeneous resources
distributed across security domains in a wide area network. The
architecture combines the elaborate control mechanisms of
mainframe systems with ubiquitous Web and Internet
technologies. Key concepts include virtualization and discovery
of resources based on service-oriented interactions. It can be seen
as the Web Services Architecture (WSA) [15] applied to Grid
computing. Another key aspect of OGSA is the management of
distributed state, such as discovery, introspection, notification,
and lifetime management. Although Web services by design are
considered stateless for scalability and decoupling reasons, state
needs to be managed to control shared resources in an application
and client agnostic way and thus enabling interoperable state-
aware interactions. Decoupling is a sound design goal for
managing change, but in highly dynamic systems there is often a
trade-off between fine-grained control and adaptation, and too
strict enforcement of abstraction and decoupling. The core Web
services specifications such as SOAP [31] and WSDL [17] do not
address this problem. The often quoted REST [20] architecture for
interacting with resources only solves the problem partially by
putting the burden of maintaining state on clients or client agents,
and is further targeted towards large-grain hypermedia transfers,
and thus very limited in its scope. REST is a very similar
approach to the one taken by Web services workflow languages,
such as BPEL4WS [11]. Request-broker-influenced specifications
[37], however, address client agnostic fine-grained resource state
sharing. We based our work on the broker model, because it also
fits better with existing programming language technology.

Web services protocols all use XML as a foundational
building block, and therefore are convenient for self-describing,
document-centric interactions (as opposed to the less flexible
API-centric model) often used in large-scale integration
environments with little or no control over the participating
parties’ implementation policies.

In OGSA-based Web-services environments, the complexity
of setting and applying policies to optimize the user quality of
service, as well as resource utilization leads to the need for
Service Level Agreement (SLA) management. Agreement, and
negotiation protocols such as Global Grid Forum’s emerging WS-

Agreement [12], and FIPA’s Contract Net [3] protocols are
example technologies addressing that need.

3. SWEGRID
SweGrid is a national computational resource, initially joining
together one cluster at each of six high-performance computing
centers across Sweden, and currently comprising 600 nodes. The
clusters located at the individual sites are interconnected with the
10 Gb/s GigaSunet network. The sites also operate several other
resources for computation and storage, and they have developed
their own security- and accounting systems over time to serve
local needs and the requirements following from different sources
of funding. SweGrid job submissions are currently done using the
Globus Toolkit [4] or the NorduGrid [35] job submission tools,
interfacing cluster-level schedulers at the local sites. Compute
time on the SweGrid resources are allocated to research projects
by the Swedish National Allocations Committee (SNAC), akin to
the NRAC (National Resource Allocations Committee) in the US.
Projects within the Swedish science community and with the
appropriate needs and promising research may apply for SNAC
allocations. The allocations are currently made in node hours, and
the decisions are made after a scientific peer-review process
evaluating the research proposals. Prior to interconnecting the
HPC centers in a Grid, allocations were targeted at individual
clusters, and the prospective research participants would have to
acquire valid user accounts at each of the centers at which quotas
were awarded to be able to run their jobs. This manual and static
allocation thus not only caused sub-optimal job-to-resource
mappings, but further led to large administrative overhead. SNAC
is hence now allocating quotas to the SweGrid as a whole. This,
however, has a large impact on how accounting is done, because
it is thereby not enough to just do local site accounting, and quota
enforcement. The allocation enforcement must be coordinated
across all sites, and the sites must be able to produce usage
records that comply with each other.

Thus a real-time enforcement solution is required in order to
make resource-mapping decisions a posteriori, considering
current user policies, resource policies, and allocation-authority
policies. The resource may, for instance, allow jobs lacking
sufficient quota to be run and put in a low priority queue if the
current utilization is low. The user may on the other hand only
want to run the job if there are sufficient funds, and finally some
allocation authorities (e.g., SNAC or project leaders) may not
allow jobs to go through from certain users who have used up a
large chunk of a common project quota. This three-way
negotiation needs to be flexible enough to allow various parties to
configure their system according to local policies.

Even though SweGrid currently consists of a fairly
homogenous compute farm with similar middleware installations,
it is expected that both the hardware and software solutions may
evolve and become distinctly heterogeneous in the future, as more
resources are added. The SweGrid accounting system must hence
be non-intrusive to the existing systems, i.e., easy to deploy or
plug into existing infrastructure, without replacing the local
accounting and scheduling systems.

4. GRID ACCOUNTING
Cluster-targeted scheduling systems as well as operating systems
commonly have built-in accounting systems to track resource
usage. However, they often assume a homogenous run-time
environment, and they lack standard ways to obtain and coordi-

280

nate information among several heterogeneous clusters. Thus
there has been a strong need for Grid accounting systems that
integrate local accounting solutions similarly to the way Grid
meta-schedulers and co-allocation managers coordinate, and
administer job submissions across several schedulers. Some
general issues that need to be solved by distributed accounting
systems on the Grid, including the need for a standard usage
record format, are outlined in [36].

In the European Data Grid Accounting System (DGAS) [24],
users need to pay for resources they use in a fictive or virtual
currency called Grid Credits. Resources earn Grid Credits when
they offer their services to users, thus stimulating market-
economy driven resource sharing. All currency transactions are
mediated by decentralized bank services. The implementation is
tightly coupled to the DataGrid workload manager software, and
thus hard to deploy without affecting the local cluster software
environment.

GridBank [13] is provided as an extension to the Globus job
manager, and it calculates job cost based on standard XML usage
records. It is thus not as intrusive as DGAS, but it still requires
modifications of a particular workload manager. An interesting
feature of GridBank is that it makes use of decentralized Trade
Servers to negotiate resource prices. GridBank is also modeled
around an economy-driven workload management [8] system
utilizing resource price matrices. Neither GridBank nor DGAS
are based on open, standard Grid protocols such as Web services
or OGSA, thus limiting their prospective scope of interoperability
with other Grid systems.

The Grid Economic Services Architecture (GESA) [32]
specified by the Global Grid Forum (GGF), presents an OGSA-
based architecture using the concept of chargeable services. When
developing a service one may associate it with a cost that can be
charged in a bank based on standard usage records. GESA is,
hence, quite intrusive to the service since it requires the service
interface to be changed in order to charge for its usage.
Furthermore, GESA was designed to be orthogonal to the security
model chosen, and does not address the security issues related to
accounting.

SNUPI [25] provides extensions to the Linux operating
system, and it allows cluster usage data to be collected and stored
in RDBMS databases, and then queried from user-friendly portal
Web interfaces. SNUPI is however not service-oriented and
assumes a homogenous cluster environment.

QBank [28] is a resource allocation management system
developed for parallel computers. Its successor, Gold [27], adds
more advanced accounting features such as price quotes, funds
transfers, and timestamped allocations. Gold also allows role-
based authorization and transaction journaling. Although it would
fulfill most of the core accounting needs discussed in this paper, it
is not developed using open, Grid, or Web services protocols, and
is thus limited in its interoperability as well as cross-platform
support. Its security model is also limited compared to our work.

5. SGAS DESIGN
We have developed the SweGrid Accounting System (SGAS) [5],
with the aim of meeting the accounting needs of SweGrid
presented in Section 3, and with a particular focus on shared quota
enforcement across organizational boundaries, security, and
simplicity of deployment. The accounting system is fully
transparent, or imposes only marginal additional requirements, to
the end-users, allowing for a smooth transition into an accounting-

enabled Grid. In this section, we present the design rationales of
the various system components.

Broker Scheduler
Workload
Manager

plugin

 JARM

Bank LUTS

User

Site Policy
Manager

SGAS

Cluster
(resource)

External
Authorization
Services

P
A
P

P
I
P

P
E
P

P
D
P

Admin
inferface

Membership/
Community
Service

P
I
P

P
I
P

P
D
P

P
D
P

SGAS
component

External
component

Generic
interface

Figure 1. SGAS components overview.

We start by describing the flexible authorization framework
(Section 5.1). Apart from a bank service (Section 5.2), which
provides most of the accounting functionality, there is a workload
manager integration component (Section 5.3), and a usage
tracking service (Section 5.4). Figure 1 shows an overview of
SGAS.

The operational flow is as follows: a user submits a job
(potentially via a brokering service) to a workload manager
service running on the resource. (We make use of a generic term
here to stress that SGAS is a generic system that can be integrated
with more than a single software stack.) The resource integration
component intercepts the request by way of a workload manager
plugin, and it interacts with the bank to reserve sufficient quota.
This interaction is further explained in Section 5.2 through 5.4.

5.1 Authorization Framework
Three parties are involved in our accounting scenario: the user,
the resource, and the allocation authority (front-ended by the
bank). Our system has multiple decision points at various levels,
allowing for both policy overlay (combining policies from
multiple sources when making a decision) as well as retention of
local control. This allows us to honor the requirements of all three
stakeholders, as well as facilitating decentralized control and
system management.

We make use of the terminology and overall architecture as
proposed by the Global Grid Forum working groups on
Authorization Frameworks and Mechanisms [30], and OGSA
Authorization [38]. We allow access permission policies to be
specified in XACML (eXtensible Access Control Markup
Language) [10]. Figure 2 shows a simple example policy in
XACML, governing what set of users may use a certain allocation
in the bank. While the implementation makes use of XACML, we
emphasize that the framework allows for any policy language
understood by the pluggable authorization engines. To illustrate
this we have successfully experimented with Delegent [34], an
authorization service capable of rights management delegation
(not supported in XACML) as an alternative back-end
authorization service, or Policy Decision Point (PDP), for the
bank.

Multiple information providers are used in the system. The
bank, for instance, may be configured to associate any user in a
particular Virtual Organization (VO) with a particular account. To

281

achieve this, external services such as VOMS [9] and CAS [33]
are used to gather membership evidence (Policy Information
Point, PIP).

The allocation authority adopts a delegated security model,
controlled by policies that can be associated within each research
project. The highest level of authorization authority is the national
allocations committee, which allocates quotas to projects/VOs.
On a project level, the principal investigator (PI) can specify
additional policies through the Policy Administration Point
(PAP), to allow various project members to use the quota. To
enable flexible self provisioning, the PI may additionally give
away a possibly restricted subset of its own management
privileges to other members.

<Policy PolicyId="SweGridTestProjectPolicy"
 RuleCombiningAlgId=
 "urn:oasis:names:tc:xacml:1.0:rule-
combining-algorithm:permit-overrides">
<Target>
 <Subjects><AnySubject/></Subjects>
 <Resources><AnyResource/></Resources>
 <Actions><AnyAction/></Actions>
</Target>
<Rule RuleId="RequestHoldRule" Effect="Permit">
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch
MatchId="urn:oasis:names:tc:xacml:1.0:function:stri
ng-equal">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">
/O=Grid/O=NorduGrid/OU=pdc.kth.se/CN=ThomasSandholm
 </AttributeValue>
 <SubjectAttributeDesignator
DataType="http://www.w3.org/2001/XMLSchema#string"
AttributeId="urn:oasis:names:tc:xacml:1.0:subject:s
ubject-id"/>
 </SubjectMatch>
 </Subject>
 <Subject>
 <SubjectMatch
MatchId="urn:oasis:names:tc:xacml:1.0:function:stri
ng-equal">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">
/O=Grid/O=NorduGrid/OU=cs.umu.se/CN=PeterGardfjäll
 </AttributeValue>
 <SubjectAttributeDesignator
DataType="http://www.w3.org/2001/XMLSchema#string"
AttributeId="urn:oasis:names:tc:xacml:1.0:subject:s
ubject-id"/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 <Resources><AnyResource/></Resources>
 <Actions>
 <Action>
 <ActionMatch
MatchId="urn:oasis:names:tc:xacml:1.0:function:stri
ng-equal">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">
 requestHold
 </AttributeValue>
 <ActionAttributeDesignator
DataType="http://www.w3.org/2001/XMLSchema#string"
AttributeId="urn:oasis:names:tc:xacml:1.0:action:ac
tion-id"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
</Rule>
<Rule RuleId="FinalRule" Effect="Deny"/>
</Policy>

Figure. 2. Example of a Bank Account policy granting
withdrawals for two project members, encoded in XACML.

Allocation requests and decisions are authenticated and
integrity protected by the use of XML digital signatures [14],
and/or WS-SecureConversation [18]. In addition, when the
resource contacts the bank, both the user’s delegated credentials
associated with the requested job (made available by the workload
manager plugin), as well as the resource’s own credentials, are
used to authenticate the allocation request.

The resource checks the quota on a soft real-time enforcement
basis. The check is soft (as opposed to strict) in that policies on
the client, as well as on the resource, can allow the job to be run
even if the allocation authority decides that a sufficient quota is
not available. This is a critical requirement from the HPC centers,
because the allocations are done periodically (for 6 or 12 months)
whereas user resource usage tends to be bursty (e.g., just before
the scientists are to publish a paper, usage goes up). Additionally,
the users may specify that they only want to execute long-running
jobs on resources that allow the jobs to complete within the
available quota limit, and the resource may disallow jobs without
enough available quota during peak utilization periods. Such
usage-based allocation decisions can be made by querying the
usage service, and by allowing the resource Policy Enforcement
Point (PEP) to shortcut the bank authorization (modulo local site
manager configuration), and overrule the final decision.

5.2 Bank
The bank component is central to the design of SGAS. It
implements coordinated quota enforcement across all the SweGrid
sites. The component consists of three OGSA-compliant services,
the Bank-, the Account-, and the Hold- services. The bank
design is presented in some more detail in [19].

The Bank service is responsible for creating and locating
Accounts, corresponding to a research-project allocation. The
Account service hands out soft-state, lease-based fund
reservations called Holds to authorized Account members.
Account members may be added or removed, or their rights
may be modified through policies defined in XML. When a Hold
is created, a specified amount of the total quota or funds is locked,
meaning it may not count towards other reservations or
withdrawals (c.f. making reservations on a credit card). The Hold
is further only accessible by the party creating the Hold,
typically the resource. The Hold can be renewed (its lifetime
extended) and it can be committed (released). A commit operation
will trigger an accounting transaction record in the Account that
the Hold was held against. The amount reserved in a Hold does
not have to match the amount committed, because they
correspond to estimated vs. actual cost to run a job. It is up to the
resource to decide whether a conservative overbooking
reservation strategy should be applied to be sure that the job
completes within the reservation time, or to be more optimistic
and reserve a smaller amount that potentially can be renegotiated
if the job did not manage to complete in time. The cost and the

282

allocations are expressed in a virtual currency, Grid Credits, and
may thus be mapped into any physical resource-specific cost.
Typically, the cost is mapped directly to wall-clock time, because
it makes it easy for the existing HPC centers’ scheduling
infrastructure to enforce as well as to measure the quota. How
physical costs should be mapped into Grid Credits is, however,
something that is decided by resource policy. A resource may, for
instance, use a standard usage record and give the various
containing attributes weights used to calculate the total cost. The
typical wall-clock approach can thus be seen as giving the wall-
clock attribute the weight of 1 and all other attributes the weight
of 0. Another advantage of the wall-clock mapping is that it
becomes intuitive for users to set a maximum wall-clock time
attribute, which corresponds to the granted SNAC time, in their
job specifications using, e.g., the Globus [4] Resource
Specification Language (RSL). They thereby initiate an implicit
in-blanco signing process with the resources. Figure 3 shows the
design of the bank, and Figure 4 depicts a common resource and

bank interaction scenario. The interfaces shown should be seen as
conceptual entities or roles of responsibility rather than
programming language constructs. The interface technology used,
typically WSDL or Java, depends on the distribution of the
components. The bank is designed with a minimal set of data-
centric operations to make it as easy as possible to interact with
and to allow for future extensions at the same time. Security
interfaces are clearly separated from application interfaces. This
allows the security implementation to be easily customized or
replaced without affecting the core bank implementation.

5.3 LUTS
The Logging and Usage Tracking Service (LUTS) is used to store
usage records compliant to the GGF Usage Record (UR) XML
format [29]. Depending on who should have access to the service,
resources may share the same LUTS in order to allow users to
query for detailed information regarding the resources consumed
by their jobs across multiple sites. The query language is XPath-
based [7] and thus very flexible and extensible. LUTS is schema
agnostic, which means that the UR may be extended with
information, such as job tracking information, that a particular
subset of resources and users understands without having to
change or reconfigure LUTS. A batch of Usage Records may be
logged at the same time to improve performance and scalability.
The service builds on the same security infrastructure as the other
SGAS services allowing, for instance, dynamic access control
permissions to be set up specifying who is allowed to query or
publish data in the service, and allowing message payloads to be
encrypted and/or signed.

+createAccount()
+getAccounts()

«interface»
Bank

+requestHold()
+query*()
+commitHolds()

«interface»
Account

+requestTermination()
+query*()
+commit()

«interface»
Hold

+setPolicy()
+query*()

«interface»
ServiceAuthzManagement

*
XPath queries.
Examples:
"/transaction" get all transactions
"/accountData" get all account properties
"/accountHoldData" get all accountHold properties
"/policy" get service policy e.g. XACML

create create

«interface»
ServicePDPsetPolicy

Figure 3. Bank interfaces.

5.4 JARM
The Job Account Reservation Manager (JARM) component is
responsible for integrating local cluster systems into SGAS.
JARM intercepts a job submission and calculates the estimated
cost of the job based on, for example, the user’s job specification
(using RSL in our case), and current system load. It then contacts
the appropriate Account, which is either specified in the RSL by
the client or alternatively searched for in the Bank. A Hold is
created with the estimated cost, and the timeout of the Hold is set
to the estimated duration of the job plus a margin. The resource
also lets the Bank know whether overdrafts are accepted, a policy
that may be requested by the client. If the Hold was created
successfully, JARM lets the local workload manager continue
with the job submission; otherwise, an error is generated and
logged.

AccountResource ServicePDP AuthzServiceAuthzHandler

requestHold()
authorize()

authorize()

requestHold()

Hold
create()

commit()

requestTermination()

addTrans()

Figure 4. Bank and resource interactions.

After the job has completed, JARM collects the usage
information, converts it into the standard GGF UR format, logs it
into LUTS, calculates the actual cost of the job, and commits the
Hold (which is then destroyed). All this typically happens in
batch mode, asynchronously in regard to the job submission, to
induce as little overhead as possible to the user-perceived
response time. In addition, it allows for higher throughput at
moments of peak load. A Site Policy Manager implementation
can easily be customized for particular workload managers and
site policies. Note that JARM shields the Site Policy Manager
from knowledge about the bank system (see Figure 1). A generic
NorduGrid Site Policy Manager has currently been implemented.

SGAS is mainly concerned with allocation enforcement, and
because it is workload-manager agnostic, scheduling and broker-
ing functionality is outside of its scope. However, we recognize

283

that economic brokering algorithms based on a thorough analysis
of economic models and business needs belongs to the future of
both scientific and industrial Grids, and that the use of cyber
money as well as virtual money is going to be a future
requirement. We therefore provide plug points for calculating,
setting, and publishing the price in the Site Policy Manager
component. Note that this does not mean that the resources need
to decide on appropriate prices in isolation to the rest of the
system. Trading and pricing services as described in [16, 24] may,
for instance, be used. The use of cyber money or real money in
conjunction with Grid Credits, is in SGAS best done at the
allocation authority level, where Bank services may charge real
money for filling up accounts with quotas.

6. SGAS IMPLEMENTATION
In this section we present experience gained from implementing
the accounting solution described in the previous section.

6.1 Implementation Approach
For interoperability reasons, the SGAS design is based on the
latest Grid and Web services protocols. In our implementation, we
wanted to go one step further by reusing toolkits implementing
these standards. The general approach taken was to compose the
solution from standards-based toolkit primitives, as opposed to re-
implementing low-level middleware or communication libraries.
Apart from the obvious advantages of developing complete
applications more rapidly and following the latest specifications
closer, we also safeguard our solution against protocol changes in
the standards, and we can leverage the interoperability testing
done by the protocol implementers.

Reuse is done on three levels: development environment (e.g.,
build system), compile-time environment (APIs), and run-time
environment (application server containers and system-level
services). The first two are commonly applied by most projects,
whereas the third is more common in the software industry than in
academia. We focus our discussion here on run-time environment
reuse in a Grid environment.

6.2 Container Framework
The Globus Toolkit (GT) [4] provides a Java-based container
implementation of the GGF Open Grid Services Infrastructure
(OGSI) protocol [37], a realization of the OGSA model. Both
OGSI and GT are designed as a set of primitives that can be freely
mixed, composed, extended, and embedded. OGSI facilitates
cross-language interoperability, whereas the GT Java container
provides a consistent, portable programming model. Below, we
first summarize how the various OGSI concepts were leveraged in
SGAS, and we then continue with describing how the GT
container features were used to achieve this.

Soft-state management (server-side managed, client-lease
controlled state) is commonly applied in both the Internet and
Grid networks, and it is a fundamental component of OGSI. We
control expiration and extension of Holds using the OGSI soft-
state protocol. Service property introspection (with its associated
query and notification framework), as a means to minimize brittle
APIs for flexible information retrieval, is another key component
of OGSI. We use this concept to query transaction records in the
Bank and Usage Records in LUTS, and to get notifications when
Holds are about to expire. OGSI specifies a factory pattern to

create stateful resources in a uniform manner. The factory pattern
is used to create both Accounts, and Holds.

GT allows code to be plugged into the container on three
different levels: message, operation, and back-end storage.
Message interceptors are mainly used for service-orthogonal
functionality, such as transaction management and security. In
SGAS, a GT-provided authorization-interceptor plugin is used to
implement the interaction between the PEP in JARM and the PDP
in the bank. Furthermore, mutual authentication, message
encryption, and message signing, are all carried out by GT
transparently to the application code in message handlers using
generic implementations of WS-SecureConversation [18], XML-
Encryption [26], and XML-Signature [14], respectively.

Operation providers allow decoupled implementations of parts
of service interfaces. A service implementation is typically made
up of a set of toolkit-supplied operation providers, and one or
many application-specific providers. The providers are specified
at deployment time, and thus promote a development model based
on composition of primitives. All SGAS services (the bank
services and LUTS) are made up of operation providers. LUTS is
composed of GT supplied operation providers exclusively, and
thus does not have any application-specific code or APIs. The
unique behavior of LUTS is achieved by a back-end storage and
query plugin that leverages an XML database implementation
(Xindice [2]) and XPath (Xalan [7]) as a query engine. GT
operation providers implement soft-state management, service
creation, notification and inspection of service state transparently
to the SGAS code.

6.3 Systems Integration and Scalability
Although the general design is to introduce as few new APIs as
possible, there are a number of high-level APIs that may be used
as a means to integrate SGAS with other systems. We expect
other Grid services to be built on similar core OGSA fabric, and
infrastructure components in the future, such as WSDL and
WSRF. This in itself offers a baseline for low-level API
interoperability that could be used e.g., by generic management
tools. As an example, Globus service data browsers and monitors
were used to manage the Bank and LUTS services. Further, the
high-level Bank and Policy management APIs provided by SGAS
and expressed in WSDL, serve as a public integration point to
other accounting and authorization components. The Bank APIs
are discussed more thoroughly in [19].

Simplicity and scalability are central to the SGAS design.
SGAS should be able to scale down to very small, as well as to
large-scale nation- and Grid-wide deployments. As a means to
scale up, the load was balanced across many Bank and LUTS
services. Additionally, charging and logging was done in batches
with intervals customized to the overall system load.

6.4 Toolkits and Standards
We summarize the toolkits and standard protocols used to
implement central features of SGAS in Table 1.

SunXACML [6] is used in the bank as a standard, self-
contained PDP engine, which checkpoints policies to the Xindice
database.

Some schedulers already have support for the GGF UR
format, but for others we provide an XSLT [7] style sheet
transformer based framework to simplify SGAS integration at
local sites.

284

7. RESULTS
In order to test the feasibility of the SGAS design we built a
simulation framework aimed at measuring reservation throughput.
The usage pattern that was simulated consisted of an allocation
authority periodically adding new allocations to a bank account,

and users making and committing reservations on that account
continuously. The behavior was studied for two separate flows.
First, a fair flow is a flow that is produced by a user, who does not
try to make more reservations than is allocated to him/her within a
given time period. Second, an unfair flow is a flow that is
produced by a user, who tries to make reservations of twice the
allotment. The unfair flow can be shaped using various policies
and overdraft protection algorithms to optimize fairness and
resource utilization. The first set of algorithms is based on the
theory of fuzzy logic [39], whereas the second set is based on
access control policy (XACML) rule conditions that may be set
by account administrators. If the reservation may not be
performed due to an overdraw violation, then there is a penalty in
job execution time, simulating the job being put in a low priority
queue by the scheduler.

Table 1. Toolkits and Standards

Toolkit SGAS Feature Standards
Implemented

Globus Service state
inspection and
notification,
soft-state
management,
factory pattern

OGSI

Globus Mutual
authentication,
credential delegation

GSI profile of WS-
SecureConversation

Globus Payload integrity, and
privacy

XML-Signature,
XML-Encryption

Xindice XML database (for
policy and service
state)

XML:DB

Xalan Query engine,
stylesheet (Usage
Record)
transformation

Xpath,
XSLT

SunXACML XACML PDP XACML
Axis [1] Web services engine SOAP,

WSDL
SGAS SGAS Usage Records GGF XML Usage

Record

It should be noted that both the fuzzy logic rule base, and the
XACML policies used are mere examples of viable algorithms
that may easily be applied using the SGAS customizability, and
extensibility features. That is, the aim here is not to show an
optimal algorithm, but rather to exemplify how a certain policy
(overdraft protection in this case) can be implemented in SGAS.

Table 2 lists the configuration used in the simulation runs.
Allocation interval refers to the time between two successive
allocations, which in the SNAC case typically is 6 or 12 months
(see Section 3 and 5.1). Overdraft penalty is the extra execution
time added due to an overdraft that is not allowed.

All the simulations can be reproduced, and the source code
can be obtained by downloading the SGAS Open Source
distribution [5].

7.1 Fuzzy Overdraft Protection Table 2. Simulation Setup

Simulation Property Time (s)

Fair Submit Interval 10
Unfair Submit Interval 5
Reservation 60
Allocation 300
Allocation Interval 50
Overdraft Penalty 60

A rule base was constructed of fuzzy variables to mimic the
intuitive policies of account administrators. The set of fuzzy
variables that were used are listed in Table 3. The allocation
proximity variable denotes whether an allocation just occurred, or
whether the next allocation will occur soon. The four rules
comprising the overdraft policy were: (fuzzy values in italics)

R1: overdraft is low ∧ allocation left is much

⇒ allow reservation

R2: overdraft is high ∧ allocation left is little
⇒ disallow reservation

Table 3. Fuzzy Variables

Fuzzy Variables Fuzzy Values

Allocation proximity recent, soon
Overdraft amount low, high
Allocation left little, much
Reservation allow, disallow

R3: allocation proximity is soon ∧ overdraft is
high ∧ allocation left is much

⇒ allow reservation

R4: allocation proximity is soon ∧ overdraft is
low ∧ allocation left is little

⇒ allow reservation

The decision is then a defuzzification of R1 ∪ R2 ∪ R3 ∪ R4.
I.e., if any of the rules above fire with a high certainty, the result
will also equal the final outcome. Trapezoid truth functions were
used in the fuzzification step, and the resulting values were
defuzzified by using a mean of maxima algorithm.

Figure 5 compares the affect of the fuzzy overdraft policy
applied to the unfair flow with a fair flow, and an unfair flow
disallowing all overdrafts. The larger the area of the flow graph is,
the worse is the reservation throughput, and the higher is the
penalty execution time. The peaks of the flows represent
overdrafts that were disallowed. Thus, the thinner the peaks are,

285

the more successful is the shaping of the flow. Note that the fair
flow was shaped to get maximum throughput by avoiding
overdrafts. The occasional peak at the beginning of the fair flow
simulation was caused by the fact that the reservations and the
periodic allocations were not started simultaneously, and thus the
first allocation happened too late to avoid an overdraft. Over time,
however, the allocations and reservations were synchronized. The
periodicity of the peaks in the unfair and fuzzy flows corresponds

to the available quota running low shortly before the new
allocations are granted.

7.2 Access Policy Overdraft Protection
In Section 5.1, the authorization framework used by SGAS is
discussed. It allows account owners to set policies regulating
access to their accounts with XACML policies. An example
policy condition is given in Figure 6. The actual value of the
XACML attribute sgas:overdraw:percent:requested
is calculated as:

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Fai r

Fuzzy

Unf ai r

Execution Time (ms)

Jobs

Submission

Flow

Figure 5. Submission flow simulation using fuzzy- and no
shaping on fair- and unfair flows.

(as + ar + rr) / ta,

where as is the allocation spent, ar is the allocation reserved, rr is
the requested reservation, and ta is the total allocation. The value
may hence be less then 100%. In that case reservations must not
completely exhaust the total allocation available in order to be
successful. The condition can be associated with any rule like the
ones exemplified in Figure 2.

In our simulations we tested three different policies allowing
25, 50, and 75% percent overdraft against the unfair job
reservation flow. The results can be seen in Figure 7. We note that
a 50% overdraft policy roughly corresponds to the fuzzy overdraft
policy in terms of job throughput, and as expected the 25% policy
is close to the unregulated unfair flow, whereas the 75% policy is
getting closer to the throughput in the fair flow.

8. CONCLUSIONS AND FUTURE WORK
We have presented an architecture, and an implementation of an
accounting system based on open, standard Grid and Web
services protocols to solve the resource quota-enforcement needs
of a national-scale Grid network. Easy non-intrusive deployment,
and integration with pre-existing, local accounting solutions
prompted the use of XML document-centered communication and
transformations and the use of a minimal set of APIs. This design
is apparent in the policy administration API allowing arbitrary
XML-specified policies to be defined for allocation decision
points with a single operation. Another example is the non-
existing API between the workload manager and the JARM
component. It is designed as a message interceptor, obtaining its
required input via runtime context and environment settings.

A customizable security model based on multiple PDPs, and
PIPs, but with a single PAP and PEP, makes it possible to easily
add new authorization services without affecting the service
usage.

 The 3-party policy negotiation design allows the resources to
implement site-specific policies to optimize utilization and
prioritize between users with different usage patterns and job-
specification requirements. Furthermore, it enables allocation
authorities such as SNAC, PIs, or individual project members to
restrict the quota distribution according to dynamic policies.

The novel set of accounting features presented in this paper to
solve the particular needs of SweGrid, and implemented in the
SGAS system, do not exist in any other existing Grid accounting
system to date. Although SGAS is primarily developed for
SweGrid, it is based on open protocols, and has generic-enough
functionality to be used in any Grid accounting setting.

The design is made general with respect to the type of mecha-
nisms that are used for balancing load between resources or for
achieving fairness between users. For example, the bank can be
used in an environment driven by market-economy strategies
where resources and resource brokers negotiate price and QoS

0

20000

40000

60000

80000

100000

120000

140000

0

20000

40000

60000

80000

100000

120000

140000

<Condition FunctionId=
 "urn:oasis:names:tc:xacml:1.0:function:integer-
less-than-or-equal">
 <Apply FunctionId=
 "urn:oasis:names:tc:xacml:1.0:function:integer-
one-and-only">
 <EnvironmentAttributeDesignator
 AttributeId=
 "sgas:overdraw:percent:requested"
 DataType=
 "http://www.w3.org/2001/XMLSchema#integer"/>
 </Apply>
 <AttributeValue DataType=
 "http://www.w3.org/2001/XMLSchema#integer">
 175
 </AttributeValue>
</Condition>

Figure 6. Example of overdraft policy allowing 75% overdraw.

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

175%

150%

125%

Execution Time (ms)

Jobs

Overdraft Limit

Figure 7. Policy-based overdraft protection simulation.

286

agreements solving the supply and demand problem. It fits
equally well into a more planned-economy model where the main
aim is to achieve fairness between users, based on given
allocations to users or projects.

We intend to continue to improve this system mainly in two
directions: (1) more sophisticated pre-allocation mechanism to
allow, for instance, SAML assertions to be used as quota cheques
for a collection of jobs, and thus limiting the bank interaction
overhead of individual jobs, (2) use of more elaborate negotiation
protocols such as Contract Net and WS-Agreement to handle
Service Level Agreement (SLA) contract policing and obligation
enforcement. With a more advanced negotiation protocol in place,
we also intend to investigate soft computing, and game theory
based decision-making procedures to automate SLA refinement.

The evolution of OGSI into the WS-Resource Framework is
also something that we welcome and look forward to incorporate
into our work, as it fits well into the state-management model of
SGAS.

9. ACKNOWLEDGMENTS
We would like to thank our colleagues, Åke Sandgren, Lars
Malinowsky, Michael Hammill, and Bo Kågström for their
feedback on this work; and Leif Nixon, and Aleksandr
Konstantinov for their help with the NorduGrid integration. We
would also like to thank Babak Sadighi, Tomas Olsson, Ludwig
Seitz, and Erik Rissanen for their work on integrating Delegent
into our authorization framework. Finally, we would like to thank
Martin Folkman for his work on developing SGAS administration
tools.

10. REFERENCES
[1] Apache Axis, http://ws.apache.org/axis, Apache Software

Foundation, 2003.
[2] Apache Xindice, http://xml.apache.org/xindice, Apache

Software Foundation, 2004.
[3] Contract Net Interaction Protocol Specification, FIPA, 2003.
[4] Globus Toolkit, http://www.globus.org/toolkit, Globus

Alliance, 2004.
[5] SGAS, http://www.sgas.se, 2004.
[6] Sun's XACML Implementation,

http://sunxacml.sourceforge.net/, Sun Microsystems, 2004.
[7] Xalan Java, http://xml.apache.org/xalan-j, Apache Software

Foundation, 2004.
[8] Abramson, D., Giddy, J., and Kotler, L., High Performance

Parametric Modeling with Nimrod/G: Killer Application for
the Global Grid? in International Parallel and Distributed
Processing Symposium (IPDPS), (Cancun, Mexico, 2000),
520-528.

[9] Alfieri, R., Cecchini, R., Ciaschini, V., dell'Agnello, L.,
Frohner, Á., Gianoli, A., Lõrentey, K., and Spataro, F.,
VOMS, an Authorization System for Virtual Organizations.
in 1st European Across Grids Conference, (Santiago de
Compostela, February 13-14, 2003).

[10] Anderson, A., Nadalin, A., Parducci, B., Engovatov, D.,
Lockhart, H., Kudo, M., Humenn, P., Godik, S., Abderson,
S., Crocker, S., and Moses, T. eXtensible Access Control
Markup Language (XACML) Version 1.0. Godik, S. and
Moses, T. eds., OASIS, 2003.

[11] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein,
J., Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S.,
Trickovic, I., and Weerawarana, S. Business Process
Execution Language for Web Services Version 1.1. Thatte, S.
ed., Microsoft, IBM, Siebel Systems, BEA, SAP, 2003.

[12] Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig,
H., Pruyne, J., Rofrano, J., Tuecke, S., and Xu, M. Web
Services Agreement Specification (WS-Agreement), Draft,
Global Grid Forum, 2004.

[13] Barmouta, A., and Buyya, R., GridBank: A Grid Accounting
Services Architecture (GASA) for Distributed Systems
Sharing and Integration. in International Parallel and
Distributed Processing Symposium (IPDPS'03), (Nice,
France, 2003), IEEE.

[14] Bartel, M., Boyer, J., Fox, B., LaMacchia, B., and Simon, E.
XML-Signature Syntax and Procesing. Eastlake, D., Reagle,
J. and Solo, D. eds., W3C, 2002.

[15] Booth, D., Haas, H., McCabe, F., Newcomber, E.,
Champion, M., Ferris, C., and Orchard, D. Web Services
Architecture, W3C, 2003.

[16] Buyya, R., Abramson, D., and Giddy, J. A Case for
Economy Grid Architecture for Service Oriented Grid
Computing, Global Grid Forum, 2001.

[17] Chinnici, R., Gudgin, M., Moreau, J., Schlimmer, J., and
Weerawarana, S. Web Service Description Language
(WSDL) Version 2.0 Part 1: Core Language, W3C, 2003.

[18] Della-Libera, G., Dixon, B., Garg, P., and Hada, S. Web
Services Secure Conversation (WS-SecureConversation).
Kaler, C. and Nadalin, A. eds., Microsoft, IBM, VeriSign,
RSA Security, 2002.

[19] Elmroth, E., Gardfjäll, P., Mulmo, O., and Sandholm, T. An
OGSA-based Bank Service for Grid Accounting Systems.
Applied Parallel Computing. State-of-the-art in Scientific
Computing. Lecture Notes in Computer Science. (to appear)
Springer Verlag.

[20] Fielding, R.T. Architectural Styles and the Design of
Network-based Software Architectures, Ph.D. Dissertation at
the Information and Computer Science Department,
University of California, Irvine, 2000.

[21] Foster, I., Berry, D., Djaoui, A., Grimshaw, A., Horn, B.,
Kishimoto, H., Maciel, F., Savva, A., Siebenlist, F.,
Subramaniam, R., Treadwell, J., and Reich, J.V. The Open
Grid Services Architecture, Version 1.0, Global Grid Forum,
2004.

[22] Foster, I., and Kesselman, C. (eds.). The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann, 1999.

[23] Foster, I., Kesselman, C., Nick, J.M., and Tuecke, S. Grid
Services for Distributed System Integration. Computer, 35
(6). 37-46.

[24] Guarise, A., Piro, R., and Werbrouck, A. DataGrid
Accounting System - Architecture - v1.0, EU DataGrid,
2003.

[25] Hazelwood, V., Bean, R., and Yoshimoto, K., SNUPI: A
Grid Accounting and Performance System Employing Portal
Services and RDBMS Back-end. in Linux Clusters: The HPC
Revolution, (Urbana/Champaign, USA, 2001).

287

[26] Imamura, T., Dillaway, B., and Simon, E. XML Encryption
Syntax and Processing, W3C, 2002.

[27] Jackson, S. The Gold Accounting and Allocation Manager,
http://sss.scl.ameslab.gov/gold.shtml, 2004.

[28] Jackson, S. QBank: A Resource Management Package for
Parallel Computers, Pacific Northwest National Laboratory,
Washington, USA, 2000.

[29] Jackson, S., and Lepro Metz, R. Usage Record -- XML
Format, Global Grid Forum, 2003.

[30] Lorch, M., and Skow, D. Authorization Glossary, Global
Grid Forum, 2004.

[31] Mitra, N. SOAP Version 1.2 Part 0: Primer, W3C, 2003.
[32] Newhouse, S. Grid Economic Services Architecture, Global

Grid Forum, 2003.
[33] Pearlman, L., Welch, V., Foster, I., Kesselman, C., and

Tuecke, S., A Community Authorization Service for Group
Collaboration. in IEEE 3rd International Workshop on
Policies for Distributed Systems and Networks, (2002).

[34] Sadighi, B., Olsson, O., and Rissanen, E. Managing
authorisations in dynamic coalitions, Swedish Institute of
Computer Science, 2003.

[35] Smirnova, O., Eerola, P., Ekelöf, T., Ellert, M., Hansen, J.R.,
Konstantinov, A., Kónya, B., Nielsen, J.L., Ould-Saad, F.,
and Wäänänen, A. The NorduGrid Architecture and
Middleware for Scientific Applications. Lecture Notes in
Computer Science, 2657. 264-273.

[36] Thigpen, W., Hacker, J., McGinnis, L., and Athey, B.
Distributed Accounting on the Grid, Global Grid Forum,
2001.

[37] Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S.,
Kesselman, C., Maquire, T., Sandholm, T., Snelling, D., and
Vanderbilt, P. Open Grid Services Infrastructure (OGSI)
Version 1.0, Global Grid Forum, 2003.

[38] Welch, V., Siebenlist, F., Chadwick, D., Meder, S., and
Pearlman, L. Use of SAML for OGSA Authorization, Global
Grid Forum, 2004.

[39] Zadeh, L.A. Fuzzy Sets. Information and Control, 8. 338-
353.

288

	INTRODUCTION
	OGSA AND WEB SERVICES
	SWEGRID
	GRID ACCOUNTING
	SGAS DESIGN
	Authorization Framework
	Bank
	LUTS
	JARM

	SGAS IMPLEMENTATION
	Implementation Approach
	Container Framework
	Systems Integration and Scalability
	Toolkits and Standards

	RESULTS
	Fuzzy Overdraft Protection
	Access Policy Overdraft Protection

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

